Robust Soft Sensor with Deep Kernel Learning for Quality Prediction in Rubber Mixing Processes
نویسندگان
چکیده
منابع مشابه
An adaptive neuro-fuzzy inference system as a soft sensor for viscosity in rubber mixing process
Mixing rubber in an internal mixer is a complex nonlinear process in which viscosity of the rubber is one of the key quantities concerning end product quality. Since viscosity can’t be measured online, soft sensor methods for modelling viscosity are investigated to establish an online control of viscosity. This paper presents a black-box approach to modelling viscosity using an adaptive neuro-f...
متن کاملLocal Deep Kernel Learning for Efficient Non-linear SVM Prediction
Our objective is to speed up non-linear SVM prediction while maintaining classification accuracy above an acceptable limit. We generalize Localized Multiple Kernel Learning so as to learn a tree-based primal feature embedding which is high dimensional and sparse. Primal based classification decouples prediction costs from the number of support vectors and our tree-structured features efficientl...
متن کاملDomain Adaptation with Soft-margin multiple feature-kernel learning beats Deep Learning for surveillance face recognition
Face recognition (FR) is the most preferred mode for biometric-based surveillance, due to its passive nature of detecting subjects, amongst all different types of biometric traits. FR under surveillance scenario does not give satisfactory performance due to low contrast, noise and poor illumination conditions on probes, as compared to the training samples. A state-of-the-art technology, Deep Le...
متن کاملsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
Kernel Methods for Deep Learning
We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20030695